Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
ACS Synth Biol ; 13(4): 1273-1289, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38536408

RESUMEN

As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Toward addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC-protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including noninvasive monitoring of physiological signals for a range of diagnostic applications.


Asunto(s)
Técnicas Biosensibles , Eritrocitos , Ligandos , Eritrocitos/metabolismo , Proteínas de la Membrana/metabolismo
2.
Blood ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498034

RESUMEN

The spectrum of myeloid disorders ranges from aplastic bone marrow failure characterized by an empty bone marrow completely lacking in hematopoiesis to acute myeloid leukemia where the marrow space is replaced by undifferentiated leukemic blasts. Recent advances in the capacity to sequence bulk tumor population as well as at a single cell level has provided significant insight into the stepwise process of transformation to acute myeloid leukemia. Using models of progression in the context of germline predisposition (trisomy 21, GATA2 deficiency, SAMD9/9L syndrome), premalignant states (clonal hematopoiesis and clonal cytopenia of unknown significance) and myelodysplastic syndrome, we review the mechanisms of progression focusing on the hierarchy of clonal mutation and potential roles of transcription factor alterations, splicing factor mutations and the bone marrow environment in progression to acute myeloid leukemia. Despite major advances in our understanding, preventing progression of these disorders or treating them at the acute leukemia phase remains a major area of unmet medical need.

7.
Nat Commun ; 14(1): 1462, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927854

RESUMEN

Protection from viral infections depends on immunoglobulin isotype switching, which endows antibodies with effector functions. Here, we find that the protein kinase DYRK1A is essential for B cell-mediated protection from viral infection and effective vaccination through regulation of class switch recombination (CSR). Dyrk1a-deficient B cells are impaired in CSR activity in vivo and in vitro. Phosphoproteomic screens and kinase-activity assays identify MSH6, a DNA mismatch repair protein, as a direct substrate for DYRK1A, and deletion of a single phosphorylation site impaired CSR. After CSR and germinal center (GC) seeding, DYRK1A is required for attenuation of B cell proliferation. These findings demonstrate DYRK1A-mediated biological mechanisms of B cell immune responses that may be used for therapeutic manipulation in antibody-mediated autoimmunity.


Asunto(s)
Linfocitos B , Cambio de Clase de Inmunoglobulina , Fosforilación , Cambio de Clase de Inmunoglobulina/genética , Centro Germinal , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
9.
Cancer Discov ; 13(2): 263-265, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744319

RESUMEN

SUMMARY: Faithful recapitulation of human bone marrow complexity has been a major challenge for the sci-entific community for many years. In this issue of Cancer Discovery, Khan and colleagues present an improved induced pluripotent stem cell differentiation protocol that generates bone marrow organoids re-creating key characteristics of human marrow. See related article by Khan et al., p. 364 (8).


Asunto(s)
Médula Ósea , Neoplasias Hematológicas , Humanos , Hematopoyesis , Diferenciación Celular , Organoides
10.
Blood Adv ; 7(13): 3253-3264, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350717

RESUMEN

GATA1 mutations that result in loss of the N-terminal 83 amino acids are a feature of myeloid leukemia in children with Down syndrome, rare familial cases of dyserythropoietic anemia, and a subset of cases of Diamond-Blackfan anemia. The Gata1s mouse model, which expresses only the short GATA1 isoform that begins at methionine 84, has been shown to have a defect in hematopoiesis, especially impaired erythropoiesis with expanded megakaryopoiesis, during gestation. However, these mice reportedly did not show any postnatal phenotype. Here, we demonstrate that Gata1s mutant mice display macrocytic anemia and features of aberrant megakaryopoiesis throughout life, culminating in profound splenomegaly and bone marrow fibrosis. These data support the use of this animal model for studies of GATA1 deficiencies.


Asunto(s)
Síndrome de Down , Eritropoyesis , Animales , Ratones , Linaje de la Célula , Síndrome de Down/complicaciones , Eritropoyesis/genética , Isoformas de Proteínas , Trombopoyesis
11.
bioRxiv ; 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38168174

RESUMEN

As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Towards addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including non-invasive monitoring of physiological signals for a range of diagnostic applications.

12.
Sci Adv ; 8(49): eabq8437, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490346

RESUMEN

Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Línea Celular Tumoral , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/uso terapéutico , Peptidasa Específica de Ubiquitina 7/metabolismo
13.
Blood ; 140(26): 2805-2817, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36283106

RESUMEN

Myelofibrosis (MF) is a disease associated with high unmet medical needs because allogeneic stem cell transplantation is not an option for most patients, and JAK inhibitors are generally effective for only 2 to 3 years and do not delay disease progression. MF is characterized by dysplastic megakaryocytic hyperplasia and progression to fulminant disease, which is associated with progressively increasing marrow fibrosis. Despite evidence that the inflammatory milieu in MF contributes to disease progression, the specific factors that promote megakaryocyte growth are poorly understood. Here, we analyzed changes in the cytokine profiles of MF mouse models before and after the development of fibrosis, coupled with the analysis of bone marrow populations using single-cell RNA sequencing. We found high interleukin 13 (IL-13) levels in the bone marrow of MF mice. IL-13 promoted the growth of mutant megakaryocytes and induced surface expression of transforming growth factor ß and collagen biosynthesis. Similarly, analysis of samples from patients with MF revealed elevated levels of IL-13 in the plasma and increased IL-13 receptor expression in marrow megakaryocytes. In vivo, IL-13 overexpression promoted disease progression, whereas reducing IL-13/IL-4 signaling reduced several features of the disease, including fibrosis. Finally, we observed an increase in the number of marrow T cells and mast cells, which are known sources of IL-13. Together, our data demonstrate that IL-13 is involved in disease progression in MF and that inhibition of the IL-13/IL-4 signaling pathway might serve as a novel therapeutic target to treat MF.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Mielofibrosis Primaria , Ratones , Animales , Interleucina-13/uso terapéutico , Interleucina-4 , Neoplasias/complicaciones , Trastornos Mieloproliferativos/complicaciones , Mielofibrosis Primaria/genética , Transducción de Señal/genética , Fibrosis , Progresión de la Enfermedad
14.
Commun Biol ; 5(1): 961, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104445

RESUMEN

The Ets transcription factor PU.1 is essential for inducing the differentiation of monocytes, macrophages, and B cells in fetal liver and adult bone marrow. PU.1 controls hematopoietic differentiation through physical interactions with other transcription factors, such as C/EBPα and the AP-1 family member c-Jun. We found that PU.1 recruits c-Jun to promoters without the AP-1 binding sites. To address the functional importance of this interaction, we generated PU.1 point mutants that do not bind c-Jun while maintaining normal DNA binding affinity. These mutants lost the ability to transactivate a target reporter that requires a physical PU.1-c-Jun interaction, and did not induce monocyte/macrophage differentiation of PU.1-deficient cells. Knock-in mice carrying these point mutations displayed an almost complete block in hematopoiesis and perinatal lethality. While the PU.1 mutants were expressed in hematopoietic stem and early progenitor cells, myeloid differentiation was severely blocked, leading to an almost complete loss of mature hematopoietic cells. Differentiation into mature macrophages could be restored by expressing PU.1 mutant fused to c-Jun, demonstrating that a physical PU.1-c-Jun interaction is crucial for the transactivation of PU.1 target genes required for myeloid commitment and normal PU.1 function in vivo during macrophage differentiation.


Asunto(s)
Hematopoyesis , Factor de Transcripción AP-1 , Animales , Sitios de Unión , Diferenciación Celular/genética , Hematopoyesis/genética , Ratones , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-jun , Factor de Transcripción AP-1/genética
15.
Nat Commun ; 13(1): 1750, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365653

RESUMEN

Interferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK. We show that this pathway is essential for IFN-suppressive effects on primary malignant erythroid precursors from MPN patients, and that increased levels of ULK1 and p38 MAPK correlate with clinical response to IFNα therapy in these patients. We also demonstrate that IFNα treatment induces cleavage/activation of the ULK1-interacting ROCK1/2 proteins in vitro and in vivo, triggering a negative feedback loop that suppresses IFN responses. Overexpression of ROCK1/2 is seen in MPN patients and their genetic or pharmacological inhibition enhances IFN-anti-neoplastic responses in malignant erythroid precursors from MPN patients. These findings suggest the clinical potential of pharmacological inhibition of ROCK1/2 in combination with IFN-therapy for the treatment of MPNs.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Antivirales/uso terapéutico , Retroalimentación , Humanos , Interferón-alfa/farmacología , Interferón-alfa/uso terapéutico , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Neoplasias/tratamiento farmacológico , Transducción de Señal , Quinasas Asociadas a rho/metabolismo
16.
Oncogene ; 41(14): 2003-2011, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35220406

RESUMEN

Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a serine/threonine kinase that belongs to the DYRK family of proteins, a subgroup of the evolutionarily conserved CMGC protein kinase superfamily. Due to its localization on chromosome 21, the biological significance of DYRK1A was initially characterized in the pathogenesis of Down syndrome (DS) and related neurodegenerative diseases. However, increasing evidence has demonstrated a prominent role in cancer through its ability to regulate biologic processes including cell cycle progression, DNA damage repair, transcription, ubiquitination, tyrosine kinase activity, and cancer stem cell maintenance. DYRK1A has been identified as both an oncogene and tumor suppressor in different models, underscoring the importance of cellular context in its function. Here, we review mechanistic contributions of DYRK1A to cancer biology and its role as a potential therapeutic target.


Asunto(s)
Neoplasias , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Cromosomas Humanos Par 21/metabolismo , Humanos , Neoplasias/genética , Oncogenes , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
17.
Biomolecules ; 12(2)2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35204735

RESUMEN

Serum levels of inflammatory cytokines are currently investigated as prognosis markers in myelofibrosis, the most severe Philadelphia-negative myeloproliferative neoplasm. We tested this hypothesis in the Gata1low model of myelofibrosis. Gata1low mice, and age-matched wild-type littermates, were analyzed before and after disease onset. We assessed cytokine serum levels by Luminex-bead-assay and ELISA, frequency and cytokine content of stromal cells by flow cytometry, and immunohistochemistry and bone marrow (BM) localization of GFP-tagged hematopoietic stem cells (HSC) by confocal microscopy. Differences in serum levels of 32 inflammatory-cytokines between prefibrotic and fibrotic Gata1low mice and their wild-type littermates were modest. However, BM from fibrotic Gata1low mice contained higher levels of lipocalin-2, CXCL1, and TGF-ß1 than wild-type BM. Although frequencies of endothelial cells, mesenchymal cells, osteoblasts, and megakaryocytes were higher than normal in Gata1low BM, the cells which expressed these cytokines the most were malignant megakaryocytes. This increased bioavailability of proinflammatory cytokines was associated with altered HSC localization: Gata1low HSC were localized in the femur diaphysis in areas surrounded by microvessels, neo-bones, and megakaryocytes, while wild-type HSC were localized in the femur epiphysis around adipocytes. In conclusion, bioavailability of inflammatory cytokines in BM, rather than blood levels, possibly by reshaping the HSC niche, correlates with myelofibrosis in Gata1low mice.


Asunto(s)
Citocinas , Factor de Transcripción GATA1 , Mielofibrosis Primaria , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor de Transcripción GATA1/metabolismo , Megacariocitos/metabolismo , Megacariocitos/patología , Ratones , Mielofibrosis Primaria/metabolismo , Mielofibrosis Primaria/patología
18.
Blood ; 139(22): 3227, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35226720
19.
Cancer Res ; 82(5): 749-763, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34911786

RESUMEN

Primary myelofibrosis (PMF) is one of three myeloproliferative neoplasms (MPN) that are morphologically and molecularly inter-related, the other two being polycythemia vera (PV) and essential thrombocythemia (ET). MPNs are characterized by JAK-STAT-activating JAK2, CALR, or MPL mutations that give rise to stem cell-derived clonal myeloproliferation, which is prone to leukemic and, in case of PV and ET, fibrotic transformation. Abnormal megakaryocyte proliferation is accompanied by bone marrow fibrosis and characterizes PMF, while the clinical phenotype is pathogenetically linked to ineffective hematopoiesis and aberrant cytokine expression. Among MPN-associated driver mutations, type 1-like CALR mutation has been associated with favorable prognosis in PMF, while ASXL1, SRSF2, U2AF1-Q157, EZH2, CBL, and K/NRAS mutations have been shown to be prognostically detrimental. Such information has enabled development of exclusively genetic (GIPSS) and clinically integrated (MIPSSv2) prognostic models that facilitate individualized treatment decisions. Allogeneic stem cell transplantation remains the only treatment modality in MF with the potential to prolong survival, whereas drug therapy, including JAK2 inhibitors, is directed mostly at the inflammatory component of the disease and is therefore palliative in nature. Similarly, disease-modifying activity remains elusive for currently available investigational drugs, while their additional value in symptom management awaits controlled confirmation. There is a need for genetic characterization of clinical observations followed by in vitro and in vivo preclinical studies that will hopefully identify therapies that target the malignant clone in MF to improve patient outcomes.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Trombocitemia Esencial , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrosis Primaria/diagnóstico , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/terapia , Trombocitemia Esencial/diagnóstico , Trombocitemia Esencial/genética
20.
Leukemia ; 35(12): 3352-3360, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34518645

RESUMEN

Children with Down syndrome are at an elevated risk of leukemia, especially myeloid leukemia (ML-DS). This malignancy is frequently preceded by transient abnormal myelopoiesis (TAM), which is self-limited expansion of fetal liver-derived megakaryocyte progenitors. An array of international studies has led to consensus in treating ML-DS with reduced-intensity chemotherapy, leading to excellent outcomes. In addition, studies performed in the past 20 years have revealed many of the genetic and epigenetic features of the tumors, including GATA1 mutations that are arguably associated with all cases of both TAM and ML-DS. Despite these advances in understanding the clinical and biological aspects of ML-DS, little is known about the mechanisms of relapse. Upon relapse, patients face a poor outcome, and there is no consensus on treatment. Future studies need to be focused on this challenging aspect of leukemia in children with DS.


Asunto(s)
Síndrome de Down/complicaciones , Factor de Transcripción GATA1/genética , Leucemia Mieloide/patología , Mutación , Humanos , Leucemia Mieloide/etiología , Leucemia Mieloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...